HOW TO: CREATE A FLAT RATE N REC USING MULTIPLE N SOURCES IN THE VRT REC CREATOR

How to: Create a flat rate N rec using multiple N sources in the VRT Rec creator
$\square$ In this example we want to apply 72 lbs of N across the entire field.
$\square \mathrm{N}$ will come from 2 products

- UREA
$\square$ DAP
$\square$ The highest rate of UREA will be $156.52 \mathrm{lbs} / \mathrm{ac}$


Ensure past and current crops are set correctly. This is very important later on.


Past - 2012


Current - 2013

## Select: N - P - K




In this example the crop rotation is Corn/Soybeans. Therefore, we want 72 lbs of N over the entire field.
Set Actual_N to 72 in the Optional Nutrient Constraints section.



Select your products. Remember, the more DAP you have in an area, the less UREA you will need to fulfill that $N$ requirement



## UREA $=(\mathrm{N} / .46)$



NOTE: N rates in table are only to show the calculation of required UREA. They may or may not be actual rates used for this field and they do not show the supplemented N gained from DAP.

This example shows you how to create a flat rate of $N$, using multiple products, while changing the rates of actual N based on Past Crop.



## Select: N - P - K

Relationships Previous Crop A.diustments Future Crop Needs Adjustments Fertilizer Products Field Rec Map Output Load Sheet


## Given that we want to apply different rates of N based on Past Crop, we need to write a separate equation for each scenario.



Select your products. Remember, the more DAP you have in an area, the less UREA you will need to fulfill that N requirement

Products to supply nutrient needs

| Primary |  |  |
| :---: | :---: | :---: |
| N | UREA | $\checkmark$ |
| P | DAP 18-46-0 | $\checkmark$ |
| K | POTASH 0-0-60 | $\checkmark$ |
| Secondary |  |  |
| Ca |  | $\checkmark$ |
| Mg |  | $\checkmark$ |
| S |  | $v$ |
| Micro-nutrients |  |  |
| B |  | $\checkmark$ |
| Cu |  | $v$ |
| Fe |  | $\checkmark$ |
| Mn |  | $\checkmark$ |
| Zn |  | $\checkmark$ |
| Lime |  |  |
| ECCE |  | $v$ |


$\square$

$\square \square$ $\qquad$


Alfalfa fields will receive no actual $N$
( $0 \mathrm{lbs} / \mathrm{ac}$ )

Corn on Soybean fields will receive less actual N


Corn on Corn fields will receive a greater amount of actual N(122 lbs/ac)

